The Standard Free Energy of Formation of $YbFe_2O_4$, $Yb_2Fe_3O_7$, $YbFeO_3$, and $Yb_4Fe_5O_{12}$ at 1200°C

NOBORU KIMIZUKA

National Institute for Researches in Inorganic Materials, Kurakake, Sakura-mura, Niihari-gun, Ibaragi, 300-31, Japan

AND

TAKASHI KATSURA

Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan

Received November 20, 1974

The standard free energy of formation of $YbFe_2O_4$, $Yb_2Fe_3O_7$, $YbFeO_3$, and $Yb_3Fe_5O_{12}$ from metallic iron, Yb_2O_3 , and oxygen was determined to be -100.38, -158.38, -58.17, and -283.40 kcal/mole, respectively, at 1200°C on the basis of the phase equilibria in the Fe-Fe₂O₃-Yb₂O₃ system. The Fe-Fe₂O₃-Lanthanoid sesquioxide systems were classified into four types with respect to the assemblage of the ternary compounds in stable existence at 1200°C, and the standard free energy of formation of YbFeO₃ was compared with those of the other lanthanoid-iron perovskites.

Introduction

Recently, Kimizuka and Katsura (1, 2)and Sugihara et al. (3) determined the standard free energy of formation of LaFeO₃, YFeO₃, Y₃Fe₅O₁₂, YFe₂O₄, EuFeO₃, and Eu₃Fe₅O₁₂ from metallic iron, respective lanthanoid sesquioxide, and oxygen after establishing the phase equilibria in the $Fe-Fe_2O_3-La_2O_3$, Fe-Fe₂O₃-Y₂O₃, and Fe-Fe₂O₃-Eu₂O₃ systems at 1200°C. Katsura et al. (4) have also revealed the thermochemical properties of lanthanoid-iron-perovskite (La, Nd, Sm, Eu, Gd, Tb, and Dy) at high temperatures. Kimizuka et al. (5) have synthesized a series of new compounds of $AFe_2O_4(A = Ho, Er,$ Tm, Yb, and Lu) and B_2 Fe₃O₇ (B = Yb and Lu) at fixed conditions of temperature and oxygen partial pressure. These new compounds have been found independently by Tannieres et al. (6) and Evrard et al. (7). On the basis of these studies, Kato et al. (8) have determined the crystal structure of $A \operatorname{Fe}_2 O_4$ belonging to the trigonal crystal system in the space group R3m.

In the present study, we have established the phase equilibria in the $Fe-Fe_2O_3-Yb_2O_3$ system at 1200°C, in which two nonstoichiometric compounds, $YbFe_2O_4$ and $Yb_2Fe_3O_7$, are stable. Based on the phase equilibria, the standard free energy of formation of $YbFe_2O_4$, $Yb_2Fe_3O_7$, $YbFeO_3$, and $Yb_3Fe_5O_{12}$ have been determined by the method of controlling oxygen partial pressure described by Kimizuka and Katsura (2).

Experimental

 Yb_2O_3 (99.9% purity) and a guaranteed reagent grade Fe_2O_3 were employed for every starting material. The oxygen partial pressure was controlled by mixing CO_2 and H_2 . Methods for preparing the samples, the apparatus adopted, the general procedures, and the method of identification of solid phases in equilibrated samples are the same as those described in the previous papers (1-4). Thus, the accuracy of the present data for the standard free energy values is the same as that of the previous studies.

Results and Discussion

(1) Phase Equilibria

Figure 1 shows the phase equilibria in the $Fe-Fe_2O_3-Yb_2O_3$ system at 1200°C under

FIG. 1. The phase diagram of the Fe–Fe₂O₃– Yb₂O₃ at 1200°C. Numbers in three solid phases mean the values of –log Po₂. The composition at each letter is: (a) Fe_{0.953}O, (b)Fe_{0.947}O, (c) Fe_{0.858}O, (d) Fe_{3.000}O₄, (e) Fe_{2.957}O₄, (f) Yb₃Fe₅O_{7.000}, (g) YbFeO_{3.000}, (h) YbFeO_{2.973}, (i) Yb₂Fe₃O_{6.885}, (j) Yb₂Fe₃O_{6.884}, (k) Yb₂Fe₃O_{7.000}, (l) YbFe₂O_{4.052}, (m) YbFe₂O_{4.002}, (n) YbFe₂O_{3.929}, (p) YbFeO_{2.989}. Solid circles show the experimental results.

varying oxygen partial pressures from $1-10^{-15.80}$ atm. The following phases were stable under the present conditons; ytterbium sesquioxide (Yb₂O₃), hematite (Fe₂O₃), magnetite (Fe₃O₄), ytterbium-iron-perovskite (YbFeO₃), ytterbium-iron-garnet (Yb₃Fe₅O₁₂), YbFe₂O₄, Yb₂Fe₃O₇, and wustite (FeO).

Ytterbium sesquioxide was stable in the oxygen partial pressures ranging from $1-10^{-15.80}$ atm. This oxide showed a very slight deficiency, but we could not determine its maximum value. Yb₂O₃ was more volatile than La₂O₃ and Y₂O₃, and we corrected the weight change as it resulted from the volatility of Yb₂O₃. YbO could not be observed in the present range of oxygen partial pressure.

The deviation from the stoichiometric composition of ytterbium-iron-perovskite was observed based on the weight change, and we determined its composition range to be from YbFeO_{2.973} to YbFeO_{3.000}. The lattice constants as an orthorhombic crystal system are given in Table I. As seen in Table I, no significant effects due to the nonstoichiometry were observed on lattice constants; this is the same result as that obtained in EuFeO₃.

It was hard to find the existence of the nonstoichiometry in the ytterbium-iron-garnet phase. The lattice constants of Yb_3Fe_5 O_{12} prepared under various conditions are also summarized in Table I.

YbFe₂O₄ and Yb₂Fe₃O₇ were stable with variable compositions. As seen in Figs. 1 and 2, the compositional variation in YbFe₂O₄ ranged from YbFe₂O_{3.929} to YbFe₂O_{4.052}, and that of Yb₂Fe₃O₇ from Yb₂Fe₃O_{6.884} to Yb₂Fe₃O_{7.000}. Both phases are black and not attacted by a hand magnet at room temperature. The crystal structure of YbFe₂O₄ has been analyzed by Kato et al. (8), and an analysis of that of Yb₂Fe₃O₇ is still in progress.

The compositional variation of the wustite phase ranged from $Fe_{0.858}O$ to $Fe_{0.953}O$; this is substantially identical to that obtained by Darken and Gurry (9). The composition of magnetite in equilibrium with hematite was taken to be the value cited by Smiltens (10). In the present study, we concluded on the basis of the X-ray powder method that the

|--|

Compound	-log Po ₂	<i>a</i> (Å)	<i>b</i> (Å)	<i>c</i> (Å)	V(ų)
YbFeO3	0.68ª	5.232 ± 0.001	5.560 ± 0.001	7.569 ± 0.001	220.1 ± 0.1
	0.68 ^b	5.230 ± 0.001	5.559 ± 0.001	7.569 ± 0.001	220.1 ± 0.1
	0.68	5.231 ± 0.001	5.562 ± 0.001	7.569 ± 0.001	220.2 ± 0.1
	9.55	5.230 ± 0.001	5.564 ± 0.001	7.569 ± 0.001	220.2 ± 0.1
Yb ₃ Fe ₅ O ₁₂	0.68°	12.300 ± 0.001			1860.6 ± 0.1
	0.68 ^d	12.300 ± 0.001			1860.9 ± 0.1
	0.68	12.300 ± 0.001			1861.2 ± 0.1
YbFe₂O₄	9.55	5.993 ± 0.002		25.128 ± 0.003	781.7 ± 0.1
	10.65	5.985 ± 0.001		25.109 ± 0.002	779.0 ± 0.1
Yb ₂ Fe ₃ O ₇	9.20	3.473 ± 0.001		28.351 ± 0.001	296.2 ± 0.1
	9.70	3.472 ± 0.001		28.730 ± 0.001	295.8 ± 0.1

CRYSTALLOGRAPHIC DATA OF YbFeO3, Yb3Fe5O12, YbFe2O4, AND Yb2Fe3O7

" Equilibrated with Yb₂O₃.

^b Equilibrated with Yb₃Fe₅O₁₂.

^c Equilibrated with Fe₂O₃.

^d Equilibrated with YbFeO₃.

wustite and magnetite phases may contain no significant amount of Yb_2O_3 . This may also be supported by the conjugation lines represented by oxygen isobars in Fig. 1.

Figures 2(a), 2(b), 2(c), and 2(d) show the relationship between the weight loss of starting materials and the equilibrium oxygen partial pressures to determine the boundary of each phase assembly. The essential features, except for the existence of the Yb₂Fe₃O₇ phase, are similar to those of the Fe-Fe₂O₃-Y₂O₃ system obtained in the previous study (2).

(2) Calculation of the Standard Free Energy of Formation of $YbFe_2O_4$, $Yb_2Fe_3O_7$, $YbFeO_3$, and $Yb_3Fe_5O_{12}$

On the basis of the present phase equilibria in the Fe-Fe₂O₃-Yb₂O₃ system, we will determine the standard free energy of formation of YbFe₂O₄, Yb₂Fe₃O₇, YbFeO₃, and Yb₃ Fe₅O₁₂ from metallic iron, Yb₂O₃, and oxygen referred to the following equations,

$$2Fe + \frac{1}{2}Yb_2O_3 + \frac{5}{4}O_2 = YbFe_2O_4 \quad (1)$$

$$3Fe + Yb_2O_3 + 2O_2 = Yb_2Fe_3O_7$$
 (2)

$$Fe + \frac{1}{2}Yb_2O_3 + \frac{3}{4}O_2 = YbFeO_3$$
 (3)

$$5Fe + \frac{3}{2}Yb_2O_3 + \frac{15}{4}O_2 = Yb_3Fe_5O_{12}.$$
 (4)

Before proceeding to calculations of the standard free energy, we will summarize the activity-composition relations found in the four nonstoichiometric compounds in the present Fe-Fe₂O₃-Yb₂O₃ system, FeO, YbFe₂O₄, Yb₂Fe₃O₇, and YbFeO₃. The present method for determining the activity is based on the Gibbs-Duhem equation. Thus, the activity of each component changes when each oxygen molecule is mixed in each stoichiometric composition. For example, the activity of Yb₂Fe₃O₇ ($a_{Yb_2}Fe_3O_7$) in the Yb₂Fe₃O₇ solid solution is expressed by the following equation,

$$\log a_{Yb_2Fe_3O_7}$$

$$= -1/2 \int_{\log Po_2(1)}^{\log Po_2(2)} (N_o/N_{Yb_2Fe_3O_7}) d\log Po_2$$

1 ... D. (A)

where log Po₂(1) means the value of oxygen partial pressure at which the activity of Yb₂Fe₃O₇ is set equal to one at a specified composition, and $N_o/N_{Yb_2Fe_3O_7}$ gives the deviation of oxygen atoms from the stoichiometric composition, because the present four compounds changed their compositions only in the reaction with oxygen. In addition, it was found in the present experiments that the values of N_o/N_{FeO} , $N_o/N_{YbFe_2O_4}$, $N_o/N_{Yb_2Fe_3O_7}$,

FIG. 2. Relationship between weight loss and $-\log Po_2$ for various compositions in starting materials. (a) $Yb_2O_3/Fe_2O_3 = 2$, starting weight, 3.3778 g. Numbers in figure mean the assembly of co-existing phases. $1Yb_2O_3 + YbFeO_3$, $2Yb_2O_3 + Y_2Fe_3O_7$, $3Yb_2O_3 + YbFe_2O_4$, $4Yb_2O_3 + FeO$, $5Yb_2O_3 + Fe$. (b) $Yb_2/Fe_2O_3 = \frac{4}{3}$, 3.0242 g; 1 YbFeO_3 + Yb_3Fe_3O_{12}, 2 YbFeO_3 + Fe₃O₄, 3 YbFeO_3 + YbFe₂O₄, $4YbFeO_3 + YbFe_2O_4$, $4Yb_2O_3 + Fe$. (c) $Yb_2O_3 + Yb_2Fe_3O_{12}$, 5 Yb_2O_3 + Yb_2Fe_3O_7, 6 Yb_2O_3 + YbFeO_4, 7 Yb_2O_3 + FeO, 8 Yb_2O_3 + Fe. (c) Yb_2O_3/Fe_2O_3 = 3/5, 2.5750 g; 1 Yb_3Fe_3O_{12}, 2 YbFeO_3 + Fe₃O₄, 3 YbFeO_3 + YbFe₂O₄, $4Yb_2Fe_3O_7 + YbFe_2O_4$, $5Yb_2O_3 + FeO$, $5Yb_2O_3 + FeO$, $5Yb_2O_3 + YbFe_2O_4$, $4Yb_2Fe_3O_7 + YbFe_2O_4$, $5Yb_2O_3 + YbFe_2O_4$, $4Yb_2Fe_3O_7 + YbFe_2O_4$, $5Yb_2O_3 + FeO$, $5Yb_2O_3 + YbFe_2O_4$, 5FeO, $5Yb_2O_3 + FeO$, $5Yb_2O_3 + FeO$, 5FeO, $5Yb_2O_3 + FeO$, 5FeO, 5FeO, $5Yb_2O_3 + FeO$, 5FeO, $5Yb_2O_3 + FeO$, 5FeO, 5FeO, $5Yb_2O_3 + FeO$, $5Yb_2O_3 + FeO$,

and $N_o/N_{\rm YbFeO_3}$ in the respective compounds were substantially proportional to related oxygen partial pressures in terms of log Po₂ within the experimental errors, and thus, it is convenient to express respective activity as a simple function of log Po₂ as

$$\log a_{i} = -1/2 \int_{\log Po_{2}(1)}^{\log Po_{2}(2)} (A + B \log Po_{2}) d \log Po_{2}$$
(5)

where a_i is the activity of the *i* component, and *A* and *B* are constants for each solid solution. The values of $\log Po_2(1)$, *A*, and *B* determined in the present study are given in Table II. The present values of $\log a_{FeO}$ at 1200°C calculated by Eq. (5) were identical to those obtained by Darken and Gurry (9) to three significant digits. The free energy data necessary for converting the CO/CO₂ ratios obtained by them to $\log Po_2$ were cited

	$\log Po_2(1)$	Limit of log Po ₂ (2)	A	В	Composition range
FeO	-11.94	-9.14	0.5388ª	0.0410ª	FeO _{1.0495} to FeO _{1.166}
YbFe₂O₄	-11.78	-8.30	0.3437"	0.0352ª	YbFe ₂ O _{3,929} to YbFe ₂ O _{4.052}
Yb ₂ Fe ₃ O ₇	9.70	-8.2	0.0190	0.0100	Yb ₂ Fe ₃ O _{6.884} to Yb ₂ Fe ₃ O _{7.000}
YbFeO ₃	-9.60	-7.40°	0.0911	0.0123	YbFeO _{2.973} to YbFeO _{3.000}

NUMERICAL VALUES FOR CALCULATING ACTIVITIES IN FOUR SOLID SOLUTIONS IN THE Fe-Fe₂O₃-Yb₂O₃ System

" These values were calculated by the least squares method.

^b An exact limit of log Po₂ could not be determined.

^c Nearly stoichiometric composition was maintained at log Po₂ ranging from -7.40 to 0.00.

from the JANAF-Thermochemical Tables (11).

Based on the present experiments, we determined the standard free energy of formation of FeO, $\Delta G^{\circ}(6)$, at 1200°C referred to Eq. (6) to be -40 240 cal/mole of FeO:

$$Fe + \frac{1}{2}O_2 = FeO.$$
 (6)

The Standard Free Energy of Formation of $YbFe_2O_4$

Based on the present phase equilibria, we may calculate the standard free energy change using

$$\frac{1}{2}Yb_2O_3 + 2FeO + \frac{1}{4}O_2 = YbFe_2O_4.$$
 (7)

The equilibrated log Po₂value connected with Eq. (7) was -11.78, and thus, the log a_{FeO} is calculated to be -0.0042 by adopting Eq. (5). Here, the activity of YbFe₂O₄ is set equal to one where the composition of YbFe₂ O₄ was YbFe₂O_{3.929}. Since the activity of Yb₂O₃ is one, we may calculate the standard free energy change, $\Delta G^{\circ}(7)$, referred to Eq. (7) to be $-19\,900$ cal/mole of YbFe₂O₄. Adding $2\Delta G^{\circ}(6)$ and $\Delta G^{\circ}(7)$, we obtain the standard free energy of formation of YbFe₂O₄, $\Delta G^{\circ}(1)$, referred to Eq. (1) to be $-100\,380$ cal/mole of YbFe₂O₄.

The Standard Free Energy of Formation of $Yb_2Fe_3O_7$

Based on the phase equilibria, we may calculate the standard free energy change as $\frac{3}{2}$ YbFe₂O₄ + $\frac{1}{4}$ Yb₂O₃ + $\frac{1}{8}$ O₂ = Yb₂Fe₃O₇. (8)

The value of $\log Po_2$ in Eq. (8) was -9.70, and the activity of $YbFe_2O_4$ in Eq. (8) is calculated as +0.0358. The activity of Yb_2Fe_3 O_7 in Eq. (8) is set equal to one. Thus, the standard free energy for Eq. (8), $\Delta G^{\circ}(8)$, is -7810 cal/mole of $Yb_2Fe_3O_7$. Adding $\frac{3}{2}\Delta G^{\circ}(1)$ and $\Delta G^{\circ}(8)$, we obtain the standard free energy of formation of $Yb_2Fe_3O_7$, $\Delta G^{\circ}(2)$, referred to Eq. (2), as -158 380 cal/mole of $Yb_2Fe_3O_7$.

The Standard Free Energy of Formation of $YbFeO_3$

From the phase equilibria, we may calculate the standard free energy change using

$$\frac{1}{6}Yb_2O_3 + \frac{1}{3}Yb_2Fe_3O_7 + \frac{1}{12}O_2 = YbFeO_3,$$

The value of $\log Po_2$ related to Eq. (9) was -9.60, and the activity of YbFeO₃ is set equal to one at this oxygen partial pressure. The activity of Yb₂Fe₃O₇ referred to Eq. (9) is calculated as 0.0039 on the basis of Eq. (5). Thus, the standard free energy change of Eq. (9), $\Delta G^{\circ}(9)$, is calculated to be -5380 cal/mole of YbFeO₃. Adding $\frac{1}{3}\Delta G^{\circ}(2)$ and $\Delta G^{\circ}(9)$, we obtain the standard free energy of formation of YbFeO₃, $\Delta G^{\circ}(3)$, referred to Eq. (3) to be -58170 cal/mole of YbFeO₃.

It is worthwhile to compare the present value of $\Delta G^{\circ}(3)$ with that calculated by a different process. Consider the following

(9)

TABLE III

Reaction	⊿G°(kcal)/mole
(1) 2 Fe + $\frac{1}{2}$ Yb ₂ O ₃ + $\frac{5}{4}$ O ₂ = YbFe ₂ O ₄	-100.38
(2) $3 Fc + Yb_2O_3 + 2 O_2 = Yb_2Fe_3O_7$	-158.38
(3) Fe + $\frac{1}{2}$ Yb ₂ O ₃ + $\frac{3}{4}$ O ₂ = YbFeO ₃	58.17
(4) 5 Fe + $\frac{3}{2}$ Yb ₂ O ₃ + 15/4 O ₂ = Yb ₃ Fe ₅ O ₁₂	-283.40
$(6) \operatorname{Fe} + \frac{1}{2} \operatorname{O}_2 = \operatorname{FeO}$	-40.24
$(7) \frac{1}{2} Yb_2O_3 + 2 FeO + \frac{1}{4} O_2 = YbFe_2O_4$	-19.90
$(8) \stackrel{s}{=} YbFe_2O_4 + \frac{1}{4} Yb_2O_3 + \frac{1}{8} O_2 = Yb_2Fe_3O_7$	-7.81
$(9) \frac{1}{8} Yb_2O_3 + \frac{1}{8} Yb_2Fe_3O_7 + \frac{1}{12} O_2 = YbFeO_3$	5.38
(10) $YbFe_2O_4 + \frac{1}{6}O_2 = YbFeO_3 + \frac{1}{3}Fe_3O_4$	9.29
(11) 3 Fe + 2 $O_2 = Fe_3O_4$	-154.50
(12) 3 YbFeO ₃ + $\frac{6}{3}$ Fe ₃ O ₄ + $\frac{1}{6}$ O ₂ = Yb ₃ Fe ₅ O ₁₂	-5.90

SUMMARY OF THE STANDARD FREE ENERGY VALUES

equilibrium based on the present phase equilibria,

$$YbFe_2O_4 + \frac{1}{6}O_2 = YbFeO_3 + \frac{1}{3}Fe_3O_4.$$
 (10)

The values of $\log a_{\text{Fe}_3O_4}$ and $\log Po_2$ related to Eq. (10) are 0 and -8.30, respectively, and the other activity values are calculated by Eq. (5) as: $\log a_{\text{YbFe}_2O_4} = +0.0169$, $\log a_{\text{YbFe}O_3} = +0.0124$. Thus, we may calculate the standard free energy change, $\Delta G^{\circ}(10)$, referred to Eq. (10), as -9290 cal/mole of YbFeO₃. The standard free energy of formation of Fe₃O₄, $\Delta G^{\circ}(11)$, referred to

$$3Fe + 2O_2 = Fe_3O_4, \qquad (11)$$

is calculated as -154500 cal/mole of Fe₃O₄ on the basis of the present study by adopting Eqs. (5) and (6). This value at 1200°C is identical with that calculated by Darken and Gurry (9). Adding $\Delta G^{\circ}(10)$, $-\frac{1}{3}\Delta G^{\circ}(11)$, and $\Delta G^{\circ}(1)$, we obtain the standard free energy of formation of YbFeO₃, $\Delta G^{\circ}(3')$, referred to Eq. (3), as -58170 cal/mole of YbFeO₃, which is identical to the $\Delta G^{\circ}(3)$ value obtained before. The Standard Free Energy of Formation of $Yb_3Fe_5O_{12}$

Based on the phase equilibria, we may calculate the standard free energy change $\Delta G^{\circ}(12)$ referred to

$$3YbFcO_3 + {}^2_3Fe_3O_4 + {}^1_6O_2 = Yb_3Fe_5O_{12}.$$
(12)

The following activity data referred to Eq. (12) are obtained: $a_{Fe_3O_4} = 1$, $a_{Yb_3Fe_5O_{12}} = 1$, $\log a_{YbFeO_3} = +0.0124$, and $\log PO_2 = -5.47$. Thus, the standard free energy change $\Delta G^{\circ}(12)$ is calculated to be -5900 cal/mole of Yb₃Fe₅ O₁₂. Adding $\frac{2}{3}\Delta G^{\circ}(11)$, $\Delta G^{\circ}(12)$, and $\Delta G^{\circ}(3)$ we obtain the standard free energy of formation of Yb₃Fe₅O₁₂, $\Delta G^{\circ}(4)$, referred to Eq. (4) to be -283 400 cal/mole of Yb₃Fe₅O₁₂. Table III summarizes the standard free energy data obtained for Eq. (1) to Eq. (12).

Other Remarks

In concluding the present study, we will point out the two remarkable trends found in the Fe-Fe₂O₃-Ln₂O₃ systems (Ln = La, Nd,

TABLE IV	
The Classification of the Fe–Fe ₂ O ₃ –Ln ₂ O ₃ S	SYSTEM

Туре	Stable ternary compounds	Lanthanoid sesquioxide
 A	LnFeO3	La ₂ O ₃ , Nd ₂ O ₃
В	LnFeO ₃ and Ln ₃ Fe ₅ O ₁₂	Sm_2O_3 , Eu_2O_3 , Gd_2O_3 , Tb_2O_3 , and Dy_2O_3
С	$LnFeO_3$, $Ln_3Fe_5O_{12}$, and $LnFe_2O_4$	Ho_2O_3 , Er_2O_3 , Tm_2O_3 , and (Y_2O_3)
D	$LnFeO_3$, $Ln_3Fe_5O_{12}$, $LnFe_2O_4$, and $Ln_2Fe_3O_7$	Yb_2O_3 and Lu_2O_3

FIG. 3. Relationship between the standard free energy of formation and the tolerance factor.

Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y). The first remark is deduced by our previous studies together with some unpublished data.

The Fe-Fe₂O₃- Ln_2 O₃ systems (Ln = La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) can be classified into four kinds of representatives with respect to the assemblage of the ternary compounds in stable existence at 1200°C. The proposed classification is given in Table IV. It may be clearly pointed out in Table IV that the trivalent ionic radius of rare earth elements plays an essential role in the phase relation in these ternary systems at 1200°C at one total pressure.

The second remark is related to the standard free energy of formation of lanthanoid-ironperovskite from metallic iron, Ln_2O_3 and oxygen. In the previous study, we determined the standard free energy of formation of YFeO₃ to be -59 800 cal/mole and now, we have obtained the standard free energy of formation of YbFeO₃. Katsura et al. (4) have revealed that the standard free energy of formation of lanthanoid-iron-perovskite (La, Nd, Sm, Eu, Gd, Tb, and Dy) is proportional to the tolerance factor defined by Goldschmidt (12). This experimental relation is also applied to YFeO₃ and YbFeO₃, as illustrated in Fig. 3. As seen in Fig. 3, the proportionality is excellent in the lanthanoid-iron-perovskite series, though we could distinguish the Gdanomaly. However, in case of YFeO₃, we can recognize some significant deviation from the normal proportionality found in lanthanoid series.

Acknowledgments

The authors express their thanks to Dr. Kenzo Kitayama, Mr. Tadashi Sugihara, and Mr. Toshimori Sekine, of the Tokyo Institute of Technology, for their helpful discussions.

References

- 1. N. KIMIZUKA AND T. KATSURA, Bull. Chem. Soc. Japan 47, 1801 (1974).
- N. KIMIZUKA AND T. KATSURA, J. Solid State Chem. 13, 176 (1975).
- T. SUGIHARA, N. KIMIZUKA, AND T. KATSURA, Bull. Chem. Soc. Japan, 48, 1806 (1975).
- T. KATSURA, K. KITAYAMA, T. SUGIHARA, AND N. KIMIZUKA, Bull. Chem. Soc. Japan 48, 1809 (1975).
- 5. N. KIMIZUKA, A. TAKENAKA, Y. SASADA, AND T. KATSURA, Solid State Comm. 15, 1321 (1974).
- 6. N. TANNIERES, O. EVRARD, AND J. AUBRY, C.R. Acad. Sci. Paris 278, C241 (1974).
- O. EVRARD, B. MALAMAN, F. JEANNOT, N. TANNIERES, AND J. AUBRY, C.R. Acad. Sci. Paris 278, C413 (1974).
- 8. K. KATO, I. KAWADA, N. KIMIZUKA, AND T. KATSURA, Z. Krist., in press.
- L. S. DARKEN AND G. W. GURRY, J. Amer. Chem. Soc. 67, 1398 (1945).
- 10. J. SMILTENS, J. Amer. Chem. Soc. 79, 4877 (1957).
- "JANAF Thermochemical Tables," 2nd ed., NSRDS-NBS 37 (1971).
- V. M. GOLDSCHMIDT, T. BARTH, G. LUNDE, AND W. ZACHARIASEN, Pt. VII Skrifter Norske Videnskaps-Akad. Oslo, I. Mat. Naturv. KI, No. 2 (1926).